The Effect of G96 and G97 on Surface Roughness of ST 37 and S45C in CNC Turning

Authors

  • nur fitria pujo leksonowati Politeknik Negeri Batam
  • Nurman Pamungkas Politeknik Negeri Batam
  • Budi Baharudin Politeknik Negeri Batam
  • Danang Cahyagi Politeknik Negeri Batam
  • Leo Van Gunawan Politeknik Negeri Indramayu
  • Adimas Adimas Politeknik Negeri Batam

DOI:

https://doi.org/10.31884/journalofappliedmechanicaltechnology.v4i1.308

Keywords:

Surface roughness, step-turning, G96, G97, CNC lathe

Abstract

ABSTRACT – This study aims to compare the effects of Constant Cutting Speed (G96) and Constant Spindle Speed (G97) modes on the surface roughness of ST 37 and S45C materials in step-turning processes using a CNC lathe. A comparative experimental method was employed, measuring surface roughness (( R_a )) at stepped diameters (16 mm, 24 mm, 32 mm, and 35 mm) with a Mitutoyo Surface Tester SJ-210. Results indicate that G96 mode produces lower surface roughness, with average ( R_a ) values of 2.22 µm (S45C) and 2.27 µm (ST 37) in the N6 class, compared to G97 mode with ( R_a ) values of 3.08 µm (S45C) and 3.03 µm (ST 37) in the N7 class. G96 mode is superior due to its ability to automatically adjust rotational speed based on diameter, whereas in G97 mode, small diameters with high rotation (1273 rpm) increase roughness due to vibration or heat. This study recommends using G96 mode for optimal surface smoothness in step-turning of similar materials.

rning of similar materials.

References

B. Radha Krishnan and M. Ramesh, “Optimization of machining process parameters in CNC turning process of IS2062 E250 Steel using coated carbide cutting tool,” Mater Today Proc, vol. 21, pp. 346–350, 2020, doi: 10.1016/j.matpr.2019.05.460.

O. B. Abouelatta and J. Mádl, “Surface roughness prediction based on cutting parameters and tool vibrations in turning operations,” J Mater Process Technol, vol. 118, no. 1–3, pp. 269–277, Dec. 2001, doi: 10.1016/S0924-0136(01)00959-1.

A. A. Khleif, F. M. Othman, and F. N. Thamer, “Experimental and Numerical Investigation of Cutting Parameters, Coated and Uncoated Tools on Surface Roughness During Turning Operation,” IOP Conf Ser Mater Sci Eng, vol. 1094, no. 1, p. 012152, Feb. 2021, doi: 10.1088/1757-899X/1094/1/012152.

A. B. Abdullah, L. Y. Chia, and Z. Samad, “The Effect of Feed Rate and Cutting Speed to Surface Roughness,” Asian J Sci Res, vol. 1, no. 1, pp. 12–21, Dec. 2007, doi: 10.3923/ajsr.2008.12.21.

A. M. Zaharudin and S. Budin, “Influence of cutting speed on coated TiCN cutting tool during turning of AISI 316L stainless steel in dry turning process,” IOP Conf Ser Mater Sci Eng, vol. 505, no. 1, p. 012044, May 2019, doi: 10.1088/1757-899X/505/1/012044.

V. Nagandran, “Modeling and Optimization of Carbon Steel AISI 1045 Surface Roughness in CNC Turning Based on Response Surface Methodology and Heuristic Optimization Algorithms,” American Journal of Neural Networks and Applications, vol. 3, no. 6, p. 56, 2017, doi: 10.11648/j.ajnna.20170306.11.

T. Somkiat, A. Somchart, and T. Sirichan, “In-Process Monitoring and Prediction of Surface Roughness on CNC Turning by using Response Surface Analysis,” in Proceedings of the 36th International MATADOR Conference, London: Springer London, 2010, pp. 213–216. doi: 10.1007/978-1-84996-432-6_49.

R. Samin, M. Z. Nuawi, S. M. Haris, and J. A. Ghani, “Statistical investigation for cutting force and surface roughness of S45C steel in turning processes by I-kaz TM method,” J Phys Conf Ser, vol. 1489, no. 1, p. 012028, Mar. 2020, doi: 10.1088/1742-6596/1489/1/012028.

M. F. Haryanto and D. S. Khaerudin, “OPTIMIZATION OF SURFACE ROUGHNESS IN TURNING S45C CARBON STEEL MATERIAL USING THE TAGUCHI METHOD,” SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin, vol. 14, no. 2, p. 112, Dec. 2020, doi: 10.24853/sintek.14.2.112-117.

S. Napid, M. R. Harahap, and A. Haris Nasution, “Effect of Cutting Parameters on Surface Roughness in Dry Machining of S45C Steel Using Carbide Tools,” International Journal of Research and Review, vol. 9, no. 12, pp. 669–677, Dec. 2022, doi: 10.52403/ijrr.20221277.

M. Royandi, I. Effendi, B. Ibrahim, and J. Hung, “Modeling of Vibration Behaviors of Turning Machining with the Constant Surface Speed Effect,” Advances in Science and Technology Research Journal, vol. 15, no. 3, pp. 134–145, Sep. 2021, doi: 10.12913/22998624/138925.

Sarang Ganeshrao Banore, “Investigation Of Surface Cutting Speed Influence On Surface Roughness,” Kaunas University of Technology, Kaunas, 2018.

R. Tiwari, D. Das, A. Kumar Sahoo, R. Kumar, R. Kumar Das, and B. Chandra Routara, “Experimental investigation on surface roughness and tool wear in hard turning JIS S45C steel,” Mater Today Proc, vol. 5, no. 11, pp. 24535–24540, 2018, doi: 10.1016/j.matpr.2018.10.250.

Mustafa Özdemir, “Modelling and Prediction of Effect of Machining Parameters on Surface Roughness in Turning Operations,” Tehnicki vjesnik - Technical Gazette, vol. 27, no. 3, pp. 751–760, Jun. 2020, doi: 10.17559/TV-20190320104114.

S. Kumar and A. K. Singh, “Volumetric shrinkage estimation of benchmark parts developed by rapid tooling mold insert,” Sādhanā, vol. 45, no. 1, p. 139, Dec. 2020, doi: 10.1007/s12046-020-01373-7.

N. Qehaja, K. Jakupi, A. Bunjaku, M. Bruçi, and H. Osmani, “Effect of Machining Parameters and Machining Time on Surface Roughness in Dry Turning Process,” Procedia Eng, vol. 100, pp. 135–140, 2015, doi: 10.1016/j.proeng.2015.01.351.

İ. Asiltürk and H. Akkuş, “Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method,” Measurement, Jul. 2011, doi: 10.1016/j.measurement.2011.07.003.

S. , Kalpakjian and S. R. Schmid, Manufacturing engineering and technology, 7th ed. Pearson Education, 2014.

International Organization for Standardization, Geometrical product specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters. ISO, 1997.

V. Guleria, V. Kumar, and P. K. Singh, “Classification of surface roughness during turning of forged EN8 steel using vibration signal processing and support vector machine,” Engineering Research Express, vol. 4, no. 1, p. 015029, Mar. 2022, doi: 10.1088/2631-8695/ac57fa.

A. Mgherony and B. Mikó, “The effect of the spindle speed control when milling free-form surfaces,” The International Journal of Advanced Manufacturing Technology, vol. 130, no. 3–4, pp. 1439–1449, Jan. 2024, doi: 10.1007/s00170-023-12811-1.

Ltd. BBN Steel Co., “St37-2 steel mechanical properties,” BBN Steel.

Fuhong Special Steel, “AISI 1045 Carbon Steel | C45 | S45C,” Fuhong Special Steel.

P. Vavruska, F. Bartos, M. Stejskal, M. Pesice, P. Zeman, and P. Heinrich, “Increasing tool life and machining performance by dynamic spindle speed control along toolpaths for milling complex shape parts,” J Manuf Process, vol. 99, pp. 283–297, Aug. 2023, doi: 10.1016/j.jmapro.2023.04.058.

N. S. Kumar, A. Shetty, A. Shetty, K. Ananth, and H. Shetty, “Effect of Spindle Speed and Feed Rate on Surface Roughness of Carbon Steels in CNC Turning,” Procedia Eng, vol. 38, pp. 691–697, Jan. 2012, doi: 10.1016/J.PROENG.2012.06.087.

A. Siti Nurrohkayati, S. Syach, and M. Takdir, “Surface Roughness Analysis and Optimization for ST 37 Steel in Lathe Operation using Design of Experiments Method,” J Phys Conf Ser, vol. 2739, no. 1, p. 012023, Apr. 2024, doi: 10.1088/1742-6596/2739/1/012023.

Published

2025-08-27

How to Cite

[1]
nur fitria pujo leksonowati, N. Pamungkas, B. Baharudin, D. Cahyagi, L. Van Gunawan, and A. Adimas, “The Effect of G96 and G97 on Surface Roughness of ST 37 and S45C in CNC Turning”, JAMET, vol. 4, no. 1, pp. 33–41, Aug. 2025.