FEM Simulation and Microstructure Validation on the Effect of SMAW Welding Speed ​​on ASTM A36

Authors

  • Yola Amelia Maureta Program Teknologi Rekayasa Konstruksi Perkapalan, Fakultas Sekolah Vokasi, Universitas Diponegoro
  • Aulia Windyandari Program Teknologi Rekayasa Konstruksi Perkapalan, Fakultas Sekolah Vokasi, Universitas Diponegoro

DOI:

https://doi.org/10.31884/journalofappliedmechanicaltechnology.v4i1.304

Keywords:

SMAW, welding speed, residual stress, distortion, FEM

Abstract

ABSTRACT – Welding is one of the metal joining processes commonly used in the shipping industry, but this process has the potential to cause residual stress and distortion due to uneven heat distribution. This study aims to analyze the effect of welding speed variations on residual stress and distortion in ASTM A36 plate butt joints using the SMAW (Shielded Metal Arc Welding) welding method. The method used in this study is a numerical simulation based on the Finite Element Method (FEM) using ANSYS 2024 R2 software, with welding speed variations of 15 cm/min, 20 cm/min, and 25 cm/min. Validation was carried out through microstructure tests on welding specimens using a metallographic microscope. The simulation results show that the higher the welding speed, the lower the residual stress and distortion values. A speed of 25 cm/min gives the best results with a residual stress of 160,29 MPa and a distortion of 0,1436 mm. The results of the microstructure test in the weld area and HAZ show fine and even grains, supporting the simulation results that high welding speeds produce lower heat input and more stable microstructures. Thus, a welding speed of 25 cm/min is recommended as the optimal parameter in minimizing residual stress and distortion in ASTM A36 plates.  

References

J. Klassen, T. Nitschke-Pagel, dan K. Dilger, “Simplified residual stress and distortion calculations of multi-pass welds and their possible influence on result quality,” Weld. World, vol. 63, no. 5, hal. 1291–1301, 2019, doi: 10.1007/s40194-019-00748-7.

R. Wu, Y. Huang, J. Xu, Y. Rong, dan Q. Chen, “Stress and distortion of the 10 mm thick plate EH40 and 316L different butt joints in 10 kW laser welding,” Opt. Laser Technol., vol. 152, no. November 2021, hal. 108179, 2022, doi: 10.1016/j.optlastec.2022.108179.

Sutrimo, I. Azmy, F. Koeshardono, dan R. Winarta, “Effect of Welding Speed on Residual Stress and Distortion of AISI 1045 Plate Using the Finite Element Method (FEM),” Int. J. Adv. Sci. Res. Eng., vol. 09, no. 01, hal. 01–08, 2023, doi: 10.31695/ijasre.2023.9.1.1.

H. Wibowo, M. N. Ilman, dan P. Tri Iswanto, “Analisa Heat Input Pengelasan terhadap Distorsi, Struktur Mikro dan Kekuatan Mekanis Baja A36,” J. Rekayasa Mesin, vol. 7, no. 1, hal. 5–12, 2016, doi: 10.21776/ub.jrm.2016.007.01.2.

N. Yohanes dan A. M. Sianipar, “Experimental Effect of Angle Variation and Speed Welding Filler Using Vertical Adaptive Sliding System In SMAW Welding,” JOMAse | Receiv., vol. 59, no. 1, hal. 1–5, 2018, [Daring]. Tersedia pada: www.isomase.org.,

M. H. A. Kadir, M. Asmelash, dan A. Azhari, “Investigation on welding distortion in stainless steel sheet using gas tungsten arc welding process,” Mater. Today Proc., vol. 46, hal. 1674–1679, 2021, doi: 10.1016/j.matpr.2020.07.264.

L. Fengde et al., “Study of the microstructure and impact properties of the heat-affected zone of high nitrogen steel for laser-arc hybrid welding,” Mater. Res. Express, vol. 6, no. 7, Apr 2019, doi: 10.1088/2053-1591/ab11f7.

J. Aldo dan H. Hariyono, “Pengaruh Temperatur Media Pendingin Terhadap Perubahan Struktur Mikro Baja Karbon Sedang,” Sebatik, vol. 26, no. 2, hal. 718–724, 2022, doi: 10.46984/sebatik.v26i2.2081.

Published

2025-08-27

How to Cite

[1]
Y. Amelia Maureta and A. . Windyandari, “FEM Simulation and Microstructure Validation on the Effect of SMAW Welding Speed ​​on ASTM A36”, JAMET, vol. 4, no. 1, pp. 42–50, Aug. 2025.