Konseptual Desain Pesawat UAV Meniru Cessna 172 Dengan Konfigurasi Sayap Morphing Untuk Misi Trainer

Authors

  • Mizan Fadhilah Sekolah Tinggi Teknologi Kedirgantaraan
  • Haqqah Risath Mas Intan Sekolah Tinggi Teknologi Kedirgantaraan

DOI:

https://doi.org/10.31884/jamet.v1i1.12

Keywords:

Conceptual Design, UAV (Unmanned Arial Vehicle), Morphing Wings

Abstract

The development of UAVs/drones in Indonesia is growing rapidly, as evidenced by many domestically made UAVs/drones, because indeed the existence of these drones can assist human tasks in certain fields, therefore researchers are interested in designing a UAV concept for trainer mission purposes with a morphing wing configuration that will be reserved for novice pilots as a condition for obtaining drone pilot certification. By using calculations using the Anderson method, the output of the calculation will be used as a reference in the preparation and manufacturing of the conceptual design of the aircraft to be made. The initial estimated weight of the Cessna 172 UAV aircraft with a morphing wing configuration for trainer mission purposes is 5.375433 lb with a fuselage length of 5.15304 ft, and a wingspan of 5.266345 ft which is positioned above the fuselage, and is powered by 1 engine motor. brushless of 0.129642 hp

References

H. Suhandari, “Horizontal Tail Sizing Pesawat Sport Ringan (LSA) Kapasitas 4 Orang Penumpang,” J. Ind. Elektro dan Penerbangan, vol. 3, no. 1, pp. 81–105, 2013.

Baiq Setiani, “Prinsip-Prinsip Pokok Pengelolaan Jasa Transportasi Udara,” J. Ilm. Widya, vol. 3, no. 2, pp. 103–109, 2015.

R. Pecora, F. Amoroso, and L. Lecce, “Effectiveness of Wing Twist Morphing in Roll Control,” J. Aircr., vol. 49, no. 6, pp. 1666–1674, 2012.

F. Previtali, A. F. Arrieta, and P. Ermanni, “Performance of a Three-Dimensional Morphing Wing and Comparison with a Conventional Wing,” AIAA J., vol. 52, no. 10, pp. 2101–2113, 2014.

V. M. Becerra, “Autonomous Control of Unmanned Aerial Vehicles,” Electron., vol. 8, no. 4, pp. 1–5, 2019.

N. T. S. Kumar, G. S. Kumar, R. S. Krishna, and T. V. Sai, “Conceptual Design of UAV at Low Reynolds Number and High Payload Lifting Canard Configuration,” Int. J. Eng. Res. Technol., vol. 7, no. 11, pp. 19–20, 2018.

I. Suroso, “Analisis Peran Unmanned Aerial Vehicle Jenis Multicopter Dalam Meningkatkan Kualitas Fotografi Udara Di Lokasi Jalur Selatan Menuju Calon Bandara Baru Di Kulonprogo,” J. Rekam, vol. 14, no. 1, pp. 17–25, 2018.

C. Ozel, E. Ozbek, and S. Ekici, “A Review on Applications and Effects of Morphing Wing Technology on UAVs,” Int. J. Aviat. Sci. Technol., vol. 1, no. 1, pp. 30–40, 2020.

D. P. Raymer, Aircraft Design: A Conceptual Approach, 6th ed. Virginia: American Institute of Aeronautics and Astronautics Inc, 2018.

M. H. Sadraey, Aircraft Design. Wiley, 2013.

A. J. Keane, A. Sóbester, and J. P. Scanlan, SMALL UNMANNED FIXED-WING AIRCRAFT DESIGN, 1st ed. Southampton: Wiley, 2017.

Y. Yulasmana and D. FX, “Desain Konseptual PTTA Nur-Solar Kapasitas Payload 1,2 Kilogram,” J. Ind. Elektro dan Penerbangan, vol. 5, no. 2, pp. 46–59, 2015.

J. D. Anderson, Aircraft Performance and Design, 1st ed. New Delhi: McGraw Hill Education, 2010.

N. Atmasari, E. B. Jayanti, N. M. Ula, M. L. Ramadiansyah, and R. Akbar, “Analisis Penentuan Power Loading Pada Desain Awal Pesawat Terbang Tanpa Awak LSU-05 NG,” J. Teknol. Dirgant., vol. 17, no. 2, pp. 109–122, 2019.

Federal Aviation Administration, Aviation Maintenance Technician Handbook - Airframe, vol. 1. 2018.

M. S. Parancheerivilakkathil, R. M. Ajaj, and K. A. Khan, “A Compliant Polymorphing Wing for Small UAVs,” Chinese J. Aeronaut., vol. 33, no. 10, pp. 2575–2588, 2020.

S. A. Hussain, “Review of Morphing Wing,” Phd Thesis, p. 71, 2017.

M. Ohashi, Y. Morita, S. Hirokawa, K. Fukagata, and N. Tokugawa, “Parametric Study Toward Optimization of Blowing and Suction Locations for Improving Lift-to-Drag Ratio on a Clark-Y Airfoil,” J. Fluid Sci. Technol., vol. 15, no. 2, pp. 1–10, 2020.

R. R. Dhafin, N. Hanafi, and S. Nugroho, “Wind Tunnel Testing Pada Konvensional Flap dan Morphing Flap Clark Y Airfoil,” Pros. SIPTEKGAN XXIII, pp. 127–136, 2019.

Y. F. GÖRGÜLÜ, M. A. ÖZGÜR, and R. KÖSE, “CFD Analysis of a NACA 0009 Aerofoil at a Low Reynolds Number,” Politek. Derg., pp. 1–8, 2021

Published

2022-11-30

How to Cite

[1]
M. Fadhilah and H. R. Mas Intan, “Konseptual Desain Pesawat UAV Meniru Cessna 172 Dengan Konfigurasi Sayap Morphing Untuk Misi Trainer”, JAMET, vol. 1, no. 1, pp. 1–9, Nov. 2022.